Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662906

RESUMEN

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Citomegalovirus , Humanos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/uso terapéutico , Mutación , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
2.
Biochemistry ; 62(2): 388-395, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36215733

RESUMEN

Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.


Asunto(s)
Hemo , Triptófano , Triptófano/química , Hemo/química , Agua , Peróxido de Hidrógeno/química , Oxidorreductasas/metabolismo , Oxidación-Reducción , Tirosina/química , Oxígeno/química
3.
ACS Chem Neurosci ; 12(12): 2072-2078, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34048227

RESUMEN

Using total internal reflection fluorescence microscopy, we followed the dissociation of GFP-tagged pleckstrin homology (PH) domains of AKT and PLCδ1 from the plasma membranes of rapidly unroofed cells. We found that the AKT-PH-GFP and PLCδ1-PH-GFP dissociation kinetics can be distinguished by their effective koff values of 0.39 ± 0.05 and 0.56 ± 0.16 s-1, respectively. Furthermore, we identified substantial rebinding events in measurements of PLCδ1-PH-GFP dissociation kinetics. By applying inositol triphosphate (IP3) to samples during the unroofing process, we measured a much larger koff of 1.54 ± 0.42 s-1 for PLCδ1-PH-GFP, indicating that rebinding events are significantly suppressed through competitive action by IP3 for the same PH domain binding site as phosphatidylinositol 4,5-bisphosphate (PIP2). We discuss the complex character of our PLCδ1-PH-GFP fluorescence decays in the context of membrane receptor and ligand theory to address the question of how free PIP2 levels modulate the interaction between membrane-associated proteins and the plasma membrane.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato , Dominios Homólogos a Pleckstrina , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Unión Proteica
4.
Proc Natl Acad Sci U S A ; 115(24): 6195-6200, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29802230

RESUMEN

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.


Asunto(s)
Hemo , Oxidorreductasas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/química , Hemo/metabolismo , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...